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Abstract Maintaining a productive and collaborative team of developers is essen-
tial to Open Source Software (OSS) success, and hinges upon the trust inherent
among the team. Whether a project participant is initiated as a committer is a
function of both his technical contributions and also his social interactions with
other project participants. One’s online social footprint is arguably easier to as-
certain and gather than one’s technical contributions e.g., gathering patch submis-
sion information requires mining multiple sources with different formats, and then
merging the aliases from these sources. In contrast to prior work, where patch sub-
mission was found to be an essential ingredient to achieving committer status, here
we investigate the extent to which the likelihood of achieving that status can be
modeled solely as a social network phenomenon. For 6 different Apache Software
Foundation OSS projects we compile and integrate a set of social measures of the
communications network among OSS project participants and a set of technical
measures, i.e., OSS developers’ patch submission activities. We use these sets to
predict whether a project participant will become a committer, and to character-
ize their socialization patterns around the time of becoming committer. We find
that the social network metrics, in particular the amount of two-way communi-
cation a person participates in, are more significant predictors of one’s likelihood
to becoming a committer. Further, we find that this is true to the extent that
other predictors, e.g., patch submission info, need not be included in the models.
In addition, we show that future committers are easy to identify with great fidelity
when using the first three months of data of their social activities. Moreover, only
the first month of their social links are a very useful predictor, coming within 10%
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of the three month data’s predictions. Interestingly, we find that on average, for
each project, one’s level of socialization ramps up before the time of becoming a
committer. After obtaining committer status, their social behavior is more indi-
vidualized, falling into few distinct modes of behavior. In a significant number of
projects, immediately after the initiation there is a notable social cooling-off pe-
riod. Finally, we find that it is easier to become a developer earlier in the projects
life cycle than it is later as the project matures. These results should provide in-
sight on the social nature of gaining trust and advancing in status in distributed
projects.

Keywords Open Source Software, Email Social Networks, Logistic Regression,
Developer Initiation

1 Introduction

Open Source Software (OSS) are developed by communities of geographically-
and temporally-distributed contributors ranging from professional software devel-
opers to volunteers from varied backgrounds who, despite participating in a very
decentralized process, succeed to work together effectively and productively [1,2].

Well known examples of thriving OSS projects, like the Linux operating system,
Apache web server, and many others, rival or even exceed the quality of commercial
competitors [3].

Although typically lacking the organizational hierarchy characteristic of com-
mercial settings, most OSS communities create and enforce clear cut contribution
policies. The resulting community structure, commonly referred to as the “onion
model” [4–6], comprises different contributor roles based on their level of com-
mitment to a project’s maintenance and evolution. At the core of the “onion”
lie contributors with write access to a project’s source code repositories (referred
to as core developers, or committers); they have the highest level of access to the
project thus can introduce changes to the code directly, but also share the greatest
responsibility of delivering and evolving a viable product. The next smallest layer
comprises peripheral developers, who typically propose smaller changes, known as
patches, in the form of bug fixes, feature improvements, or contributions to docu-
mentation; patches are reviewed by core developers and are added to the project’s
source repositories at their discretion. Finally, users are the downstream consumers
of OSS; their participation in OSS communities is mostly restricted to discussions
on mailing lists or issue reports.

OSS communities are also faced with high turnover [7]. Therefore, to ensure a
community’s sustainability over time, the progressive integration of new members
in all layers of the “onion” is paramount [8, 9]. This process, typical of merito-
cratic communities [10–12], has received a lot of attention in the empirical soft-
ware engineering research literature, where it is variously referred to as developer
initiation [13], entering the circle of trust [13], migration [14], or immigration [15].
A typical trajectory to becoming a core developer is to start communicating with
other project contributors and then gradually get more involved, by earning a more
central position in the project’s social networks and/or producing more valuable
technical contributions, for example, submitting patches, or working on bug fixing
activities [8,15]. Eventually, developers may reach the core of the “onion” through
the recognition of their contributions.
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The congruence of a newcomer’s social and technical activities is crucial for
successful participation in an open source project [16]. In a sense, a newcomer is as
integral to the project as their contributions, be they communications or bug fixes.
Strong patches containing working and well-tested code lead to increased trust in
the developer’s ability to add technical value to the project. Similarly, strong social
skills signify that the developer can integrate well with the project team. The more
trustworthy a developer, the more likely she is to eventually reach the core of the
“onion” and achieve committer status. Generally, only those contributors who have
sufficiently proven themselves through their activities become committers [10–12].

Developer initiation in OSS, thus, depends on the social and technical actions
of project contributors, e.g., who they talk to, the number of social links they
develop with other project members, their communication patterns, patch sub-
mission activity, or bug identification and fixing activity. But to what extent do
social activities and technical activities work together to increase one’s chance of
advancing through the ranks? And how does one’s socialization behavior evolve
from before to after having been recognized as core developer or committer?

In this article we revisit the issue of migration between roles in OSS projects,
studying it from a social network analysis perspective. We collect data about
social (i.e., communication on mailing lists) and technical (i.e., patch submissions
and code changes) activities of developers in 6 projects from the Apache Software
Foundation (ASF), arguably the most famous example of a large-scale meritocratic
community [10–12]. From the data we build and compare statistical predictors for
the likelihood of a newcomer to become a core developer (committer).

We find that:

– Developer initiation in OSS can be modeled very well as a social network
phenomenon based solely on people’s communication activities, in particular
the number of two-way social links they establish, i.e., messages participants
respond to, or messages they receive in response to their own message.
The two-way social links are different from a one-way communication, most of
which might not attract any attention or response. We find that social-links-
based models exhibit better predictive ability for developer initiation than
models incorporating patch submissions.

– Whether a contributor will eventually become a committer can be predicted
with great accuracy from the first three months of their tenure with the project.
In most cases, this is based solely on the number of their two-way social links.
Furthermore, models learned on only a single month of data, containing the
social links that one establishes, yield good prediction results that are within
10% of the accuracy of models learned on three months of data. In other words,
as little as one month of trace data is sufficient to predict whether a contributor
will reach the team core (committership).

– Contributors steadily ramp-up their social activities in each project, on aver-
age, before becoming core developers. After obtaining committer status, their
social behavior is more individualized, falling into few distinct modes of behav-
ior. In a significant number of projects, immediately after the initiation there
is a notable social cooling-off period. Interestingly, and perhaps predictably,
there is an apparent robustness in the communication patterns of developers
with prior engagement in the ASF community, which we expound on in a case
study.
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– The impact of both social and technical participation declines with project
age. In other words, it becomes more difficult to attain committer status as
the project matures.

These findings have implications for researchers and practitioners alike. On
the one hand, our work contributes to the growing body of research in empirical
software engineering (e.g., [17–21]) advocating the importance of social factors in
the evolution of (OSS) software projects. On the other hand, OSS practitioners, be
they newcomers wishing to contribute to a project, or managers interested in the
sustainability of a project’s community of contributors (e.g., for Apache, Project
Management Committees, whose role, among others, is to “further the long term
development and health of the community as a whole”1) can use the evidence we
provide to optimize their initiation or oversight processes, respectively.

The rest of the article is organized as follows. We first focus on the background
behind OSS development and migration and present our research questions. Then,
we describe the data and data gathering process, followed by our methods, results,
and conclusion sections.

1.1 Background: The Apache Software Foundation Process

The Apache Software Foundation (ASF) community has a flat, bazaar-like [22]
structure, in which “anyone can be a contributor”2. Still, different contributor
roles exist, and are clearly defined3. Similarly to the “onion” model, in ASF one
can distinguish between users (as in the “onion” analogy), who contribute to dis-
cussions on mailing lists or report bugs, developers (peripheral developers), who
in addition provide patches or contribute to documentation, and committers (core
developers), who were granted write access to the code repository and can push
their changes directly. In addition, ASF committers can be elected based on merit
to participate in each project’s Project Management Committee (PMC), the entity
which, as a whole, controls the project and approves active developers for com-
mittership. Finally, active committers or PMC members can be elected as ASF

members. They are considered the “shareholders” of the foundation, with project-
related as well as cross-project responsibilities and activities, such as electing the
board or proposing new projects for incubation.

Apache projects as well as many other OSS projects adhere to the meritocratic
governance model, in which participants gradually gain influence over a project,
and consequently advance through the ranks, through the recognition of their
contributions. In this article we focus on the transition from developer to committer,
often studied in the empirical software engineering research literature [13–15]. To
become a new committer, a contributor must first gain acceptance within the com-
munity and show commitment to the project. This can be accomplished through
any number of ways—assisting users on the user list, testing code, writing docu-
mentation, bug triaging, or writing code and submitting patches for review and
integration into the code base. Only when a developer has contributed sufficiently

1 https://www.apache.org/foundation/how-it-works.html#pmc
2 http://community.apache.org/contributors/
3 http://www.apache.org/foundation/how-it-works.html#roles



Developer Initiation and Social Interactions in OSS 5

to a project, they may be nominated for committer status by an existing com-
mitter, after which voting takes place. Existing committers may then choose to
grant this developer committer status, allowing her to make direct changes to the
project’s source code repository. Sought-after characteristics of ASF committers
are “the ability to be a mentor and to work cooperatively with [one’s] peers” 4

Such traits can be observed early on, during a developer’s technical and social

collaborative activities before obtaining committer status. Technically, submitting
patches is the preferred way in which unverified code changes are communicated
in many OSS projects. Submitting a bug fix patch provides a basic degree of evi-
dence that a developer understands the software at a technical level. To have their
patches accepted, developers must submit work of high quality (e.g., well tested,
well integrated with that of others) as well as advertise and argue its relevance to
the project. Socially, actively contributing to mailing list discussions and offering
useful suggestions and criticisms are key ways in which a new contributor can
attract the attention of existing committers and gain social reputation within the
community.

Hence, whether a developer will eventually become a committer is a function of
all their social and technical activities within the project’s ecosystem. In general,
trust in a developer’s technical and social skills is believed to increase with time,
as a result of increased contribution and interaction with other contributors [23].
To illustrate this process, consider the example of John (name redacted for privacy
reasons), whose first public interaction with the Apache Pluto community is on
the mailing list in August 2006:

Hello all, I’am John from the University [...], we are developing the Prototype for
the JSR 286. I hope that we can discuss the code [...] we have made and then develop
new code for Pluto together [...],

referring to his and some of his fellow student’s intentions to contribute to Pluto.
John gets the attention of Pluto committers and is immediately welcomed as a
developer into the community, but without commit rights:

John, who already subscribes to this list, appears to be cooperative. He wants to
work with us and contribute code to our SVN repository with the help of current Pluto
committers. He already has agreed to work on two of the most important container-
related Pluto 1.1 issues. I’m suggesting we create a branch based on our current Pluto
1.1 trunk. He and his group can submit their code by creating issues in this Jira
branch and attaching patches to these issues. It will be up to the Pluto committers to
add these contributions to SVN. In time, I hope that John can earn the right to be a
committer himself [...].

After submitting a total of 33 patches, John signals his readiness for committership
in March 2007:

[...] Maybe we could all benefit if I can commit our patches myself. Please write
me comments if we made anything wrong and how we can make it better.

However, it seems too early for Pluto committers to trust him yet:

I understand your frustration. At the same time, I encourage you to continue
to be active on this list. The development list is a HUGE part of the open source
community, and you will only help your cause by having these types of discussions
as well as airing design decisions on this list. That type of consistent communication
will get you a long way - not only in getting attention from committers, but also in
obtaining commit credentials [...] I would also recommend that your group begin to

4 http://community.apache.org/contributors/
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Figure 1. We consider an ASF project community’s circle of trust to be comprised of commit-
ters. Developers A and B are candidates for entering the circle. The activities of B are more
significant positive predictors of her gaining committer status because she communicates more
(thin solid arrows) than A does (thin dashed arrows), even though A contributes patches and
B does not.

communicate exclusively on the mailing lists. This will show that you are a critical part
of our community. Becoming a committer is as much (if not more) about community
involvement as it is about code.

John presses forward and eventually becomes a Pluto committer in August 2007,
one year after joining the mailing list.

Therefore, temporal measures of participation (both technical and social), in-
cluding the number of emails sent, one’s degree in the email social network, the
number of committers among a developer’s neighbors, the numbers of bugs re-
ported, or the number of patches submitted, may all be indicators of the com-
munity’s trust in a developer’s abilities [24, 25]. Different paths to committership
may exist, as illustrated in Figure 1. There, A contributes patches, but commu-
nicates rarely with other project members, while B does not submit patches but
communicates extensively with other project members. Our results, presented in
this article, show that B’s activities are more significant for predicting her future
committership than are those of A.

It is important to note that this is just the basic framework of how a contributor
becomes a committer in ASF projects, and the situations may vary for different
projects, or different stages of evolution of different projects. For example, some
projects may require developers to enter bugs into an issue tracking database,
such as Bugzilla or Jira, while others may require users to submit bug reports
to a mailing list. The latter method may increase the interaction between users,
developers and committers in those projects, thus affecting the dynamics of earning
trust. Additionally, different contributors may have different motivations to join a
project [5,26,27], e.g., enjoyment, reputation building, and skill improvement. The
commercial backers of some OSS projects may also provide incentives for skilled
programmers to contribute in order to grow their project in its early stages, while
in the later stages, when the project has matured, developers are often more willing
to volunteer in order to gain a signaling benefit to prospective employers [26].
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1.2 Research Questions

In this article we seek to identify effective social activity predictors of developer
initiation in OSS projects, with a focus on ASF projects, and to improve upon ex-
isting models for predicting future committers. Previous work has focused mainly
on technical activity predictors of developer initiation (e.g., based on code com-
mits, patches submitted, or issues resolved). We hypothesise that social activity
yields at least as strong predictors as technical activity, especially in OSS commu-
nities such as Apache, which “values the community more than the code”5.

First, we ask which social metrics are effective predictors that a contributor
will become a committer, and how do they interact with the technical measures
of patch activities?

Research Question 1: To what extent can developer initiation in OSS
projects be modeled as a function of patch activities and social communi-
cation? And to what extent solely as a function of social communications?

Early in their tenure as OSS project contributors, people’s patterns of technical
and social activities are rapidly changing. Contributors usually take some time to
familiarize themselves with the code before submitting patch fixes. Additionally,
they also might try to assimilate the project culture and available knowledge ini-
tially before asking questions of their own. Therefore, predictions of future status
may (or may not) be unreliable early in a person’s tenure. Here, we seek to predict
project participants’ likelihood of becoming a committer based on the patterns of
their activities early in their tenure, and in doing so understand how early can
predictions be done, with reasonable reliability.

Research Question 2: How accurately can developer initiation be predicted
from their earliest activities in the project? That is, can we tell if someone
will become a committer based on their activities in the first three months?
Six months? Or as little as one month?

As with many deadline oriented tasks, approaching the goal is usually associ-
ated with the anticipation of it. In that regard, we would expect not much variance
in people’s behavior just before being initiated a developer, as one tends to ramp
up one’s activities to reach a goal. The communication activities that follow the ini-
tiation time would presumably be less cohesive, and more connected to individual
preferences and styles of work. This may be more apparent for people who already
participate in other OSS projects. Whereas in the RQs above we contemplate
the importance of social communication to achieving committer status, next we
ponder at a finer resolution how the social activity of future committers changes
as they approach their developer initiation time, and how their communication
patterns evolve hence. Specifically, we ask,

5 http://community.apache.org/contributors/
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Research Question 3: What is the relationship between the amount of one’s
communication activity and the periods of time just before and just following
their initiation as committers? Do they become more social as they approach
their initiation time? Do they fall back into more individualized patterns after?
Is their behavior related to their experience in other projects?

Finally as projects evolve, determinants of trust are also likely to evolve and
change, consequently, measures of trust and predictors of status change may not
be static. This is mirrored in other fields, e.g., clandestine operations, where com-
munication is over public channels but action traces are rarely readily observable.
While the number of committers in a project typically grows proportional to its
size, the number of participants in a project’s mailing list (e.g., developers and
users) grows exponentially. This increasing gap between potential committers and
new position openings in turn change how trust is earned as a project matures.

Research Question 4: Is it easier or more difficult to become a committer
later in the project?

2 Related Work

In this article we model developer initiation and study social interactions between
contributors to six Apache Software Foundation projects. References to related
work pertaining to individual steps in our analysis process can be found throughout
the text. In this section we discuss three other areas of related work, studies of ASF
projects in Section 2.1, studies of developer initiation in OSS in Section 2.2, and
general studies of newcomer incentives and socialization within an organization
Section 2.3.

2.1 Studies of ASF Projects

The Apache Software Foundation has a rich and public history that has driven
many research studies. The number and scope of these projects is too large to
give full justice here, we mention just a few to illustrate the variety of contexts
in which these projects have been studied. Bird et al. used Apache software in his
work on social network mining [28]. Rahman et al. used Apache projects to study
cross project defect prediction, and bias in software engineering datasets [29, 30].
Jureczko and Madeyski also studied cross project defect prediction using several
Apache projects [31]. Jureczko and Spinellis used a collection of Apache projects to
model defection prediction using Object Oriented metrics [32]. Posnett et al. used
18 different ASF projects to illustrate the risk of ecological fallacy in empirical
software engineering studies [33].
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2.2 Studies of Developer Initiation in OSS

There have been a fair number of studies on the motivations of developers for
joining OSS projects and migration in OSS projects. Some projects have clear
guidelines on how a new participant can contribute. The structure of this hierar-
chical process is known in the literature as the “onion model” [5, 6].

Von Krogh et al. performed a detailed case study of the Freenet project; they
interviewed participants and developers recording their patterns of individual ac-
tivity and concluded that individuals following these guidelines are highly more
likely to become developers [34]. Ducheneaut examined a single individual and his
process of promotion to a core developer in the Python project [8]. Jensen and
Scacchi studied role sets and the process of role migration in Mozilla, ASF and
Netbeans [14].

Sinha et al. studied how developers enter the “circle of trust” by identifying key
factors that lead to committer status [13]. They hypothesized that developers who
contribute to the projects’ bug tracking system, have prior experience contributing
code to OSS, and who work for the same organization as some member of the core
group, are more likely to obtain committer status.

The path to becoming a committer is not necessarily a step-by-step process.
Herraiz et al. found that apart from gradual progression, there is another common
developer joining pattern, viz., the quick initiation of employees of enterprises
invested in that OSS project as new developers [35]. Shibuya and Tamai per-
formed case studies and confirmed these findings on other OSS projects (GNOME,
OpenOffice.org, MySQL) [36].

Qureshi and Fang have identified different classes of committers based on so-
cialization patterns using Growth Mixture models. They found that for each class
of social behavior, the “Lead Time” (i.e., the time it takes to become a developer)
is unique and correlates with the amount of social activity of that class [37].

Bird et al. quantitatively modeled the relationship between time spent with the
project and the probability of becoming a committer; their model used patch activ-
ities, social network attributes, and the time to first commit from the time of first
communication on an email network [15]. Using proportional hazard rate modeling
they observed that a committer’s tenure is related to his skill and commitment as
measured by his participation in the email network and his contribution of patches
prior to first commit. Further, they identified and described a non-monotonic trend
in the likelihood of becoming a committer that rises with tenure, peaks, and then
declines with project maturity. While their work is similar to ours in some aspects,
their approach of predicting the “time” until one becomes a committer is in con-
trast to our work in that we focus on identifying “who” is more likely to become a
committer rather than “when”. The hazard analysis techniques used in their work
support their approach.

Zhou and Mockus have modeled the status of “Long Term Contributors” based
on three dimensions: environment, willingness, and capacity [38]. Their work fo-
cuses on issue tracking systems and workflows within those systems as sources of
information.

Our work differs in that we focus on understanding how soon can we predict
developer initiation after initial participation and, additionally, to what degree can
social metrics replace technical attributes.



10 Mohammad Gharehyazie et al.

2.3 Genereal Studies of Newcomer Incentives and Socialization

The dynamics of social activity patterns around times of precisely defined goal
achievements have been studied formally before. In a broader context, the issue is
related to reward sensitivity, “an incentive motivational state that facilitates and
guides approach behavior to a goal” [39], also referred to as goal-directed approach
behavior [40]. Particularly interesting are the works of Lucas et al. [41] and Ashton
et al. [42] expounding the importance of reward sensitivity for explaining one’s so-
cial behavior. In addition, goal-directed approach behavior has been studied in the
context of gamification [43]. Cheng and Vassileva [44] observed “gaming” behav-
ior in an educational online community, i.e., incentivizing user contributions with
status enhancements (analogous to incentivizing developers with committership
prospects in our context) motivates users to adjust their behavior to maximize
their chances of receiving the reward, even inappropriately by adding low-quality
resources. Farzan et al. [45] found that some incented users stop contributing af-
ter reaching a specific status level in a social networking website for employees
at IBM. Anderson et al. [46] studied badges, or online distinctions achieved by
users as reward for activity, and their role in steering online users behavior in
Stack Overflow. They found that “activity on the targeted actions increases sub-
stantially before users achieve the badge, and then almost immediately returns to
near-baseline levels. Most of the other site actions are not adversely affected—the
rates of these actions remain relatively stable over time.” Similar findings have
been reported by Grant and Betts [47].

While our results are specifically about achieving committer status within open
source projects, it fits within a more general framework of understanding how
newcomers are integrated into their work environment. Begel and Simon studied
newcomers to software development within Microsoft [48]. Their focus was on
understanding how science pedagogy prepares students for the workforce. One
finding of interest to this study is that they found that newcomers spend significant
portions of their time communicating with peers. The process of transitioning
from outsider to insider is called Organizational Socialization, or Onboarding, in the
psychology literature [49, 50]. Baur et al. study the orgnaizational socialization of
70 individuals using path modeling to ascertain how the effects of role clarity, self-
efficacy, and social acceptance, mediate the effects of organizational socialization
tactics and newcomer information seeking [51]. A finding of interest here is that
social acceptance has a positive mediating affect on newcomer information seeking
with respect to performance, organizational commitment and intentions to remain.

3 Data Gathering

The Apache Software Foundation is an umbrella for hundreds of different OSS
projects. We sought to analyze a diverse sample of them, with respect to both
project size and activity. We selected six ASF projects, each with an acceptable
minimum number of contributors, to make our modeling results statistically ac-
ceptable. The six projects together with summary statistics are presented in Ta-
ble 1.

For each project we mined data from three sources. The first is the developer

mailing lists, which contain traces of developers social activities, from which we
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Table 1. The ASF projects selected in this study show diversity both in size and in relative
activity. #Users refers to the number of individuals in the email social network. #Committers
refers to the number of distinct committers to each project’s source code repository.

Project #Users #Committers #Mails #Patches Start End
Ant 1416 44 17300 1482 2000-01 2012-03
Axis2 c 600 24 11152 754 2004-01 2012-03
Log4j 539 18 3811 166 2000-12 2012-03
Lucene 2155 41 43922 5576 2001-09 2012-02
Pluto 266 24 3017 259 2003-10 2011-09
Solr 840 19 14411 4090 2006-01 2010-04

reconstruct email social networks. We deemed the mailing lists provide an unbiased
set of communications, sufficient for our purposes of capturing neccessary data for
our statistical predictive models6. The second is the issue tracking systems, which
contain information about patch submissions, indicative of one’s technical activities

pre-committership. And third, we mined the source code repositories to extract
information about committer status. All sources were mined from the earliest
date the data was available, until the date of mining (March 2012). The start and
end dates reported in Table 1 represent the intersection of available data from all
three sources, for each project.

In this section we describe the specific process we followed to extract data
from each of the three sources. An overview is depicted in Figure 2. All data
(processed and raw) described here along with all the scripts used to process them
are available in an online appendix, at http://csiflabs.cs.ucdavis.edu/~ghareh/
supplementary/oss/.

3.1 Unmasking Aliases

OSS contributors often use different aliases (combinations of names and email ad-
dresses such as <John Smith, smith@gmail.com>, <Smith, John@smith.com>, <John
S., J.smith@ucdavis.edu>) in different repositories they participate in (e.g., source
code repositories, issue trackers, mail archives), or even in the same repository but
at different times (e.g., an ASF committer with a personal, say gmail.com, email
address might also push changes from an account configured to use her apache.org
email address). Since such aliases represent a single physical entity (i.e., a person),
they must be merged if one is to accurately capture a contributor’s total activity
within the project.

Unmasking aliases (or identity merging) is a well-recognized problem in the
literature (e.g., [28,52,53]), thus far without any perfect solutions [54]. In this ar-
ticle we employ an extended version of the technique developed by Bird et al. [28],
based on heuristics and string similarity measures. The heuristics include guessing

a person’s likely email address prefixes based on their first and last names (e.g.,

John Smith might use prefixes such as john, jsmith, johns, or john.smith), then
using this information to aid matching the different aliases. Our extension con-
sisted in refining the heuristics (e.g., we have observed in our dataset that certain

6 Issue trackers also capture communication between committers and developers. We did
not use those because the mailing lists contained a large enough communication sample which
was not obviously biased in any way
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Figure 2. The process diagram of data gathering, processing, modeling, and finally evaluation
as described in the paper.

email addresses such as jira@apache.org may be used by different contributors;
therefore, such addresses should not be used for matching) and automating the
procedure further, to reduce the need for human interaction.

Succinctly, the process consisted of the following steps. First, we filtered names
and removed all suffixes, prefixes, and generic names, such as Dr., Mr., Jr., or
Admin. Then, for each pair of aliases we calculated a similarity score (on a unit
scale) based on the Levenshtein (edit) distance between the different alias parts
(name-to-name, or name-to-email-prefix), as described in the original work by
Bird et al. [28]. Next, we merged perfect matches (having score 1) automatically,
and presented less than perfect matches that achieved a score of at least 0.93
(threshold determined empirically on other Apache data to offer a good tradeoff
between false positives and false negatives) to one of the authors to disambiguate.
Finally, the results were reviewed by a different author and few incorrect matches
were corrected.

The process was repeated for each of the three mined data sources (source code
repositories, issue trackers, mail archives), with more manual intervention of the
authors to merge aliases between the three.



Developer Initiation and Social Interactions in OSS 13

3.2 Constructing Email Social Networks

It is a common policy for OSS projects to channel as much communication as
possible through project mailing lists so that all participants can benefit from
the exchange of ideas and information [28]. While other venues of communication
in OSS exist (ranging from discussions around issues recorded in bug tracking
systems, to IRC channels, to private email or even offline communication between
developers), developer lists are known to be the hub of developer communication in
OSS [55], i.e., the place where most communication happens and where the team
meets to discuss issues, code changes, additions, etc. Therefore, we view developer
lists (such as dev@ant.apache.org mined in this article) as representative of the
different developer communication media available in OSS. In addition, developer
lists are very suitable for studying developer initiation in ASF since all proposals
and voting for granting developers committership are recorded therein.

Any message sent to a mailing list will be broadcast to all subscribed partici-
pants. Still, point-to-point exchanges (links) between different list subscribers can
be inferred, using the reply information [28, 56, 57]. When person B replies to a
message originally broadcast by person A to the list, there is a high chance that
B primarily intended to communicate directly to A as opposed to again broad-
cast to the entire list [28]. Such links are in fact two-way social links, in that the
communication occurs both ways (A communicated with all list subscribers hence
implicitly also to B; B communicated explicitly to A since she replied directly
to A).

The networks resulting from parsing the emails in each project’s mail archives,
reconstructing the discussion threads and extracting the in-reply-to links are known
as Email Social Networks (ESNs) [28]. ESNs are indicative of a project’s social
structure and can be used to assess a contributor’s social activity. We created
ESNs for each of the six projects by removing self-loops, i.e., replies to one’s
own message, and allowing multiple edges between people (e.g., as inferred from
communication at different times). We use the ESNs to compute social activity
measures for each developer, such as the total number of messages sent within a
time unit, the number of neighbors, or the number of neighbors having committer
status, as detailed in the Modeling section below.

3.3 Mining Patch Submissions

Patches are small pieces of code intended to fix bugs or otherwise incorporate
small changes into the code base. While patch submission is not limited to non-
committers, the term “patches” is typically used to denote code contributions by
developers who have not yet been granted commit rights to a project’s source code
repository. Patch submission does not imply patch acceptance, with committers
reviewing and applying patches as they see fit. Patch submission does however
signal one’s interest to contribute to a project, and is a typical technical means
for a developer to build reputation within a community before reaching committer
status.

There are multiple methods and formats in which one can submit a patch
to an OSS project. The commonly employed format for a patch submission is
a “diff” file containing the proposed changes. Patches are submitted for review
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1 bool isMessageAPatch(message m) {
2 messageText = getMessageText(m);
3 diffExpressions = ["+++", "---"]
4 if (contains(messageText, diffExpressions)==T)
5 return(TRUE);
6 attachments = getMessageAttachments(m);
7 for (attachment in attachments)
8 if (isAttachmentAPatch(attachment) == TRUE)
9 return(TRUE);

10 return(FALSE);
11 }
12

13 bool isAttachmentAPatch(attachment A) {
14 patchExpressions = [".patch", ".diff", "patch."]
15 if (contains(fileName(A), patchExpressions) == T)
16 return(TRUE);
17 else
18 if (isArchive(A) == TRUE) {
19 files = extract(A);
20 for (file in files)
21 if (isAttachmentAPatch(file) == TRUE)
22 return(TRUE);
23 }
24 return(FALSE);
25 }

Algorithm 1: The pseudocode for mining patches from message texts and attach-
ments

either as attachments to issues opened in the project’s issue tracking system (e.g.,

Jira, Bugzilla), or as attachments to messages posted on the developer mailing
list. Furthermore, since patches are in fact source code fragments, they can be
embedded directly in the text of a comment posted to an open issue or, similarly,
in the text of a message sent to the developer list. For ASF projects, all these
methods for patch submissions are common.

File names of patches submitted as attachments typically end with a .diff or
.patch extension. This convention is not always respected, as we also found patches
submitted under different names (e.g., patch.txt), or multiple patch files combined
in an archive. To capture this variance, we developed a set of heuristics based
on regular expression pattern matching, that included inspecting the contents of
archived files. Similarly, we used regular expression pattern matching queries to
extract inline patches from emails, or comments or descriptions to issues reported
in Jira and Bugzilla. A pseudocode representation of the processes used to mine
patches is given in Algorithm 1. The distribution of patches mined in each project
from the different sources is presented in Table 2.

3.4 Mining Source Code Repositories

A source code repository and a version control system, e.g., Git, SVN, and CVS,
facilitate collaboration among committers by maintaining a history of changes
and an associated log entry for each change. These systems can provide various
information about a project’s size (e.g., a list of all the files), team size (e.g., a
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Table 2. Different projects have different practices for patch submission, making extraction
challenging.

Maling Lists Bugzilla Jira
Inline Attachments Attachments Inline Attachments

Ant 413 976 93 0 0
Axis2 c 63 200 0 27 464
Log4j 87 57 19 0 3
Lucene 141 107 0 88 5240
Pluto 15 26 0 8 210
Solr 30 4 0 48 4008

Table 3. The total number of committers to each project, out of which those that do not
appear in the ESN or have less than three months of social activity data available prior to
them becoming committer (the filtered column). Remaining committers are what we consider
initiated developers.

Project #Committers #Filtered Committers #Remaining Committers
Ant 44 13 31
Axis2 c 24 3 21
Log4j 18 8 10
Lucene 41 9 32
Pluto 24 10 14
Solr 19 5 14

list of committers), or a detailed record of all changes induced by any committer.
Currently, all six ASF projects considered here use Git as their version control
system, but some initially used either CVS or SVN and later migrated to Git. The
current Git logs incorporate the history of changes to these projects prior to their
migration to Git.

Among others, this information allows us to distinguish between developers

(contributors that are part of the ESN and submit patches through any of the
methods described above) and committers (contributors who push changes directly
to the project’s source code repository as evident from the version control logs),
at any time in the history of a project. Consequently, we consider the date of one’s
first recorded commit in the project’s version control logs as their date of becoming
a committer. While this is an approximation, since a contributor may have been
granted committership before her first actual commit, both previous work [15] as
well as manual inspection of a random sample of developers in our dataset suggest
this to be an accurate representation of one’s initiation date.

Table 3 lists the number of distinct committers (after unmasking aliases) for
each project, as well as the number of distinct committers used in the statistical
modeling (described next), i.e., those present in the project’s ESN and for which at
least three months of social activity data is available prior to becoming committers.

3.5 Computing Social and Technical Activity Metrics

Gathering the data from the three sources described above resulted in a rich longi-
tudinal dataset of social and technical activities in each project. Figure 3 provides
an illustration of this dataset, with the unfolding of events in one project involv-
ing three contributors A, B and C. Assuming the project started at time t1, we
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Figure 3. Illustration of the interplay between social and technical activities in our dataset. The
metrics for this sample are given in Table 4. A star denotes starting a new thread, the envelope
symbolizes responding to a thread/message, the patch icon denotes submitting a patch and
the code icon symbolizes committing code to the repository. An arrow from A to B denotes
that B’s message was sent in response to A’s. The horizontal axis denotes time.

Table 4. Social and technical activity measures for sample dataset in Figure 3 assuming k = 3.

ID Initiated Num.
Patches

Num.
Messages

Num.
Threads

Neighbors Neighbor
Committers

Project
Age

A TRUE 1 5 1 2 1 90
B FALSE 0 6 1 2 1 90
C FALSE 1 3 0 2 2 120

observe that B commits to the repository during the same month (hence B starts
off as a committer). At time t2, A starts a new discussion thread on the mailing
list. At time t3, B replies to the thread previously started by A. Shortly after, A
attaches a patch to an issue reported by someone else in the issue tracker (not
shown). At time t4, C joins the discussion thread started by A at t2, by replying
to the email sent by B at t3 and attaching a patch to this reply email. We skip
ahead to time t6, when A’s first commit is recorded in the version control logs,
hence t6 becomes A’s initiation date as committer. In contrast, C continues being
active on the mailing list until t8, the end of time displayed, but without ever
being initiated as committer.

Note that we will build different prediction models for one’s likelihood of be-
coming a committer (time-independent binary outcome variable) using data about
their communication and patch submission activities collected during their first k
months of activity in the project (we experiment with k = 1, k = 3, or k = 6, recall
RQ2). This implies that a developer’s communication or patch submission activ-
ities must have preceded their initiation date as committer by at least k months,
otherwise they would be excluded from the sample. For example, in Figure 3 B

would be excluded at any of k = 1, k = 3, or k = 6, while A would be excluded at
k = 6 because her activity started at t2 and her initiation date is t6.
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On the dataset resulting from the above pre-processing, we compute the follow-
ing measures of social and technical activity for each developer (for the example
in Figure 3, the measures are given in Table 4):

– Initiated : A binary variable indicating whether this developer ever committed
directly to the repository after her first message in the mailing list.

– Number of Patches: The total number of patches submitted during the first k
months of activity in the project (months are approximated as 30 days).

– Number of Messages: The number of edges connected to a node in the ESN, i.e.,

a node’s degree. This is not just the number of messages one sends, but rather
the number of replies one sends plus the number of replies one receives.

– Number of Threads: The number of threads started. A thread is a message that
is not sent in response to any other messages.

– Neighbors: The number of unique nodes that a node is connected to in the ESN.
This is different from Number of Messages in that a node can connect to other
nodes through multiple edges.

– Neighbor Committers: The number of unique nodes with commiter status that
a given node is connected to in the ESN.

– Project age: The number of days from the start of the mailing list to the first
appearance of this node, i.e., the first message received by or replied by that
person in the ESN. In our example both A and B’s Project age are 90 days
because as explained previously, only response messages are counted towards
the ESN and for A it is the first response it gets that counts as its first link in
the ESN.

4 Modeling

In this section we describe our methodology, including logistic regression and the
analysis of socialization dynamics around the time of becomming a contributor.

4.1 Modeling Committer Initiation

We use logistic regression, a generalized linear modeling technique designed to
model probabilities for dichotomous outcomes, to model whether or not a developer
will reach committership based on several social explanatory variables.

The logit log( 1
1−p ) models unbounded response as a probability using maximum

likelihood estimation which, given a distribution, finds the values of the parameters
that give the observed data the greatest probability. That is, maximum likelihood is
used to estimate the following general model which yields an estimated probability
p̂i that the true value of the response is 1 [58].

log(
1

1− p ) = β0 + β1x1 + β2x2 + . . .+ βpxp + ε

For each predictor the z-test statistic is computed. This statistics divides the es-
timated value of the parameter by its standard error and is used to assess the
significance of the variable. This statistic is a measure of the likelihood that the
actual value of the parameter is not zero [58].
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Previous work in this area has used survival modeling to model the trajectory
over time of developer initiation [15]. In this work we are focused on early detection
of developer initiation which limits the amount of data available to model the tra-
jectory. Moreover, since we are interested in the dichotomous outcome of whether
a participant becomes a developer, logistic regression is a more appropriate choice.

The dataset used for our studies, contains the features and metrics described
above for the first k months, of each individual’s activity (k = 3 unless explicitly
stated). We attempt to predict the “Initiated” outcome. We generated multiple
models for each of the research questions. The variables used for each of the models
are described in the results.

For our models we are primarily interested in the direction of the effect of each
predictor. We want to control as much as possible for other sources of variation
that might be incorrectly attributed to the variables of interest.

The age of the project or “Project age”, i.e., when a person joins the project, is
added to all models as a control variable. For all numeric variables, the log of that
variable plus 0.5 was used to stabilize variance and reduce heteroscedasticity [58].
Since all untransformed values in our data are skewed, the increase in the value
of a variable by half a unit does not have the same effect at high values as it does
in low values, e.g., the number of patches changing from 1 to 1.5 is much more
meaningful than changing from 100 to 100.5.

For transformed variables, comparison with the non-transformed variable shows
that this transformation yields a better fit using Vuong’s non-nested test [59].

Considering we are trying to predict who is going to become a committer,
sample data for developers who were initiated in fewer than k months were removed
from the dataset (Table 3).

For each learned model, we evaluate its validity based on two criteria. The
first is project independence, i.e., we want our model to hold across projects. One
way to address this issue is to merge all projects’ datasets into one dataset. This
raises several concerns such as scaling of variables i.e., 30 messages may considered
much in one project while it is a small value in another. At the same time multiple
project dependent parameters that we cannot measure such as project “culture”,
or simply we are not aware of exist. The other solution is to look at the stability of
each model coefficient’s statistical significance, as determined by the coefficient’s
p-value. We choose the latter because it does not pose the aforementioned threats.

Commonly, a p-value of less than 0.05 is an indicator of significant results. If a
predictor’s coefficient is statistically significant across all projects, then it is more
likely to be a project independent factor. On the other hand, if a coefficient is only
statistically significant on few of the projects, it is most likely dependent on some
project parameter, such as “culture”, and “maturity”.

Excessive multicollinearity is a concern in regression models and it can occur
when predictors are highly correlated. To check for this we use the Variance Infla-

tion Factor (VIF). A common rule of thumb is that for any variable x in a model,
V IF (x) > 5 indicates high collinearity. In all of our models in this article, VIF of
all variables remained well below 2 except for some models with highly correlated
variables. These models were discarded as it will be explained later in the article.
We then move towards evaluating each model’s performance i.e., predictive power.

Some of the basic definitions of a binary classifier’s performance are True Pos-
itive (TP), True Negative (TN), False Positive (FP) and False Negative (FN).
True Positive/Negative is the number of positive/negative samples that the clas-
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sifier guessed correctly. False Positive/Negative is the number of negative samples
that the classifier guessed wrong. TP rate is defined as TP over number of all
actual positive samples in the testing set and FP rate is defined as FP over the
number of all actual positive samples. The Receiver Operating Characteristic or
the ROC curve illustrates the performance of a binary classifier in a FP rate-TP

ratespace, while varying the cutoff threshold. A random predictor would be a line
with the slope of 1 and the area of 0.5 while a perfect predictor will have an area
of 1 because it will always have a TP rate of 1, and an FP rate of 0.

To evaluate a model’s predictive power, we use the Area Under the Receiver

Operating Characteristic (AUROC) measure [58]. For each model, we measure its
AUROC and the closer this value is to 1, the better the predictor will be. In cases
where we aggregate performance of many models, we simply measure the mean of
the models’ AUROC.

Overfitting is a concern with any statistical model so to help alleviate any con-
cern and to yield a stable estimate of the predictive power of our models we employ
resampling methods. We define training and testing sets using 2/3 holdout for our
training sets. To maintain a similar distribution of committers vs. developers in
the training and testing sets we employ stratified sampling. Each of the test and
training sets will then have roughly the same ratio of committers to developers.

This ensures that the resulting model is not extremely biased in that the train-
ing set would contain almost all, or none of the developers. The first case would
cause a testing set with no positive samples, and the latter would results in a
zero model due to the lack of positive samples in the training set. We resample
250 times and average the AUROC over all these models to indicate the overall
predictive power of a model.

4.2 Dynamics of Social Activities Before and After Becoming a Developer

Here we look at the dynamics of the amount of socialization, or social activities,
i.e., emails, of developers around the time of them becoming a committer. We start
by counting the number of messages sent to or received by a person in the 6 months
prior to their developer initiation and the 6 months immediately after the event.
We filter out those developers who are not active in at least 6 months before and
after, to avoid biased results (the number of remaining developers is given in the
results). Then, we can observe the overall behavior of the developer population
by comparing the number of messages before and after becoming a developer.
By aggregating the data in buckets we can statistically assess how socialization
changes from the period before to the period after initiation. In addition to the
statistics we also conduct a case study on a handful of developers to offer email
content-based evidentiary support for our findings.

5 Results and Discussion

5.1 Research Question 1

We evaluate here the stability and predictive power of models using patches, length
of time with the project, and a number of social measures. We motivate this
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Table 5. Patch submission is a significant predictor when no social variables are included in
the model. This basic logistic regression model only uses “number of patches” in 3 months and
includes “project age” as a control variable. For all variables, the log of that variable plus 0.5
was used in the modeling. The values in the first column are the model coefficients and the
highlighted coefficients are statistically significant (p < 0.05).

Ant Estimate Std. Error z value Pr(> |z|)
(Intercept) -1.73 1.12 -1.55 0.12
Project age -0.33 0.18 -1.87 0.06
Number of patches 1.06 0.18 5.82 0
Axis2 c Estimate Std. Error z value Pr(> |z|)
(Intercept) -0.91 1.01 -0.9 0.37
Project age -0.39 0.16 -2.46 0.01
Number of patches 0.93 0.21 4.53 0
Log4j Estimate Std. Error z value Pr(> |z|)
(Intercept) -3.53 1.98 -1.78 0.07
Project age -0.11 0.29 -0.38 0.7
Number of patches 0.36 0.83 0.43 0.67
Lucene Estimate Std. Error z value Pr(> |z|)
(Intercept) 1.08 0.84 1.28 0.2
Project age -0.7 0.12 -5.71 0
Number of patches 1.16 0.18 6.42 0
Pluto Estimate Std. Error z value Pr(> |z|)
(Intercept) -0.88 0.84 -1.05 0.3
Project age -0.34 0.15 -2.3 0.02
Number of patches 1.11 0.32 3.45 0
Solr Estimate Std. Error z value Pr(> |z|)
(Intercept) 0.44 1.19 0.37 0.71
Project age -0.72 0.19 -3.69 0
Number of patches 0.75 0.29 2.58 0.01

question with Figure 4. This figure shows that, although most of the time there is
a meaningful difference between committers and developers who submit patches,
still there are many developers who behave like committers in terms of patch
submission. Consequently, it is likely that using patches alone may not yield the
best prediction model.

This simple model, using “Number of patches” and no social network measures
shows that patch submission is often a statistically significant predictor (Table 5).
Based on what was described in the methodology section the prediction model’s
formula in this case is:

Initiated ∼ log(project age+ 0.5) + log(number of patches+ 0.5)

In Table 5 (as well as all other tables with same format hereafter) we have shown
the results of logistic regression on each projects data separately. Each row below
each project represents that specific predictor. The “Estimate” column represents
the estimated coefficient for that specific predictor. “Std. Error” is the standard
error of the coefficient and “z value” is the t-statistic of the coefficient. “Pr(> |z|)”
shows the p-value of the coefficient for the predictor.

However, adding “number of messages” (as an indicator of social collaboration)
to this model results in patches slightly losing their significance (Table 6). We
used a Chi-Squared goodness of fit statistic to verify that the additional predictor
explained a statistically significant amount of the deviance in the model, viz., is
the addition of the new variable justified. For all projects projects except Pluto
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Table 6. The second logistic regression model, adding “number of messages” to the pre-
vious model: Initiated ∼ log(project age+0.5) + log(number of patches +0.5) + log(number of

messages+0.5). It is seen that “number of patches” slightly loses its significance.

Ant Estimate Std. Error z value Pr(> |z|)
(Intercept) -4.32 1.32 -3.28 0
Project age -0.2 0.19 -1.08 0.28
Number of patches 0.61 0.2 3.06 0
Number of messages 1.07 0.2 5.35 0
Axis2 c Estimate Std. Error z value Pr(> |z|)
(Intercept) -2.85 1.33 -2.15 0.03
Project age -0.3 0.17 -1.81 0.07
Number of patches 0.53 0.25 2.11 0.03
Number of messages 0.57 0.22 2.62 0.01
Log4j Estimate Std. Error z value Pr(> |z|)
(Intercept) -7.28 2.51 -2.9 0
Project age -0.13 0.3 -0.42 0.67
Number of patches -0.8 0.98 -0.82 0.41
Number of messages 1.89 0.44 4.26 0
Lucene Estimate Std. Error z value Pr(> |z|)
(Intercept) 0.26 0.89 0.29 0.77
Project age -0.8 0.13 -6.04 0
Number of patches 0.69 0.22 3.14 0
Number of messages 0.74 0.2 3.75 0
Pluto Estimate Std. Error z value Pr(> |z|)
(Intercept) -1.44 1 -1.44 0.15
Project age -0.37 0.15 -2.46 0.01
Number of patches 0.81 0.42 1.95 0.05
Number of messages 0.42 0.4 1.04 0.3
Solr Estimate Std. Error z value Pr(> |z|)
(Intercept) -2.86 1.45 -1.97 0.05
Project age -0.67 0.2 -3.39 0
Number of patches -0.15 0.35 -0.44 0.66
Number of messages 1.18 0.31 3.83 0

adding “number of messages” was significant with a Chi-Squared test p-value of
< 0.01. A Spearman correlation test between “number of messages” and “number
of patches” does not show significant correlation between them, mostly below 0.3
over all projects, in concordance with our VIF values of less than 2.

The predictive power of these two models and the additional models with only
“Number of messages” and the combination “Number of messages + Threads” is
shown in Figure 5. We see that not only adding number of messages dramatically
improves the predictive power, but removing the patches variable from the model
does not lower the predictive power of the model. A Kruskal-Wallace test followed
by a post-hoc pairwise Wilcoxon test for each project reveals that in all projects
except Pluto and Lucene either the models with messages or messages and threads
have the highest mean AUROC, and this difference is statistically significant. In
Lucene, the best model uses both patches and messages. In Pluto, although the
patches model has the highest AUROC, there is no statistical difference between
the models. Using patch information alone is not a bad predictor, but it is evident
that using social network metrics yields more accurate predictions.

Furthermore, we attempt to improve this simple model by adding additional
features from the ESN. Since we have observed that sending and receiving messages
is an important indicator of whether someone will become a developer or not,
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Figure 4. Distribution of number of patch submissions by committers and developers in each
project. Only individuals with at least one patch submission are plotted, since adding those
with no submission would highly skew the plots towards zero. The numbers in the parentheses
show each group’s population (after filtering non-patch-submitters). A Wilcox signed rank test
across each project yields p-values in order: 0, 0.01, 0.44, 0, 0.72, 0, indicating that in Log4j
and Pluto, patch submission is not statistically different for those participants who become
committers and those who don’t when measured in the first three months of participation.

Table 7. Spearman’s Correlation between different variables in all projects. Correlation values
higher than 0.5 are highlighted.

Ant Axis2 c Log4j Lucene Pluto Solr
messages vs. comm. neighbors 0.62 0.52 0.49 0.55 0.53 0.65
neighbors vs. comm. neighbors 0.69 0.61 0.60 0.72 0.72 0.80
messages vs. neighbors 0.82 0.76 0.70 0.67 0.66 0.75
threads vs. comm. neighbors 0.21 0.38 0.12 0.38 0.25 0.56
threads vs. neighbors 0.31 0.54 0.14 0.37 0.25 0.48
threads vs. messages 0.31 0.74 0.17 0.61 0.53 0.64

naturally we ask whether it is the number of messages that is important or the
number of distinct individuals one keeps in contact with? More precisely, are these
contacts the same, or is communicating with developers more important than
communicating with other participants? Also we want to see whether starting
threads and discussions in contrast to replying and being replied to, is also an
important factor in gaining the trust of the community.

These variables are quite highly correlated and we expect that this will im-
pact model performance (The Spearman correlation between these variables can
be seen in Table 7). We added the number of started threads, neighbors and neigh-
boring developers to our existing models. While some predictors are statistically
significant in some models as can be seen in Table 8, most are hampered by the
high variance inflation factor owing to the high correlation between “Number of
Messages”, “Number of neighbors”, and “Number of developers” (Table 7). “Num-
ber of threads”, however, was significant in two projects, Ant, and Solr, and had



Developer Initiation and Social Interactions in OSS 23

●

●

ant axis2_c log4j lucene pluto solr

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Patches

●

●
●

●●

●

●
●●

ant axis2_c log4j lucene pluto solr
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Patches+Messages

●
●

●

●

●

●

●

●

●

●

●

●

●

ant axis2_c log4j lucene pluto solr

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Messages

●

●

●

●

●
●●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●●

ant axis2_c log4j lucene pluto solr

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Messages+Threads

Figure 5. Social measures outperform patch submission in a predictive setting. AUROC of 4
models, on 250 iterations of modeling using stratified data.

a sufficiently low variance inflation factor that inclusion of the variable improved
prediction results. We discuss this further in the next subsection.

Result 1: Developer initiation can be modeled using social activity alone,

performing no worse than models which also incorporate patch submission. The

basic model of social activity only uses “Number of Messages”, however adding

“Number of Threads” improved prediction results in 2 of the projects, hinting this

might be a matter of “project culture”.

5.2 Research Question 2

In the previous section we used information on the first three months of individuals’
activity to model their likelihood of obtaining committer status. But how early
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Table 8. High multicollinearity limits the effectiveness of additional social variables. None of
the added social network measures are stable across projects. Number of threads is significant
in two projects, ant, and solr.

Ant Axis2 c Log4j Lucene Pluto Solr
(Intercept) -4.13 -4.24 -6.28 -0.27 -2.49 -2.78
Number of messages 1.2 0.9 1.67 1 0.58 1.01
Number of neighbor devs 0.08 -0.26 0.25 0.05 0.72 0.27
Project age -0.29 -0.21 -0.17 -0.83 -0.33 -0.65
(Intercept) -5.64 -3.78 -6.87 -0.39 -2.04 -5.33
Number of messages 1.04 0.82 1.51 1.14 0.69 2.74
Number of threads 0.69 -0.01 0.6 -0.15 0.28 -1.26
Project age -0.17 -0.26 -0.12 -0.82 -0.43 -0.77
(Intercept) -5.7 -4.71 -16.87 -1.66 -2.66 -5.64
Number of messages 1.01 0.21 -2.09 0.25 0.23 2.21
Number of threads 0.69 0.12 1.07 -0.03 0.34 -1.24
Number of neighbors 0.05 1.12 7.3 1.58 0.89 1.08
Project age -0.16 -0.15 0.9 -0.67 -0.34 -0.74
(Intercept) -5.63 -4.28 -7.06 -0.39 -2.26 -5.56
Number of messages 1.03 0.94 1.15 1.12 0.34 2.6
Number of threads 0.69 -0.04 0.68 -0.14 0.35 -1.27
Number of neighbor devs 0.02 -0.27 1.02 0.03 0.85 0.37
Project age -0.17 -0.21 -0.11 -0.82 -0.39 -0.72

can such models provide useful predictions? Is one month of information sufficient,
or should we increase to 6 months or more to yield better prediction models?

To evaluate the sufficient-time-for-prediction hypothesis, we use the simple
model discussed in the previous section (only using “Number of Messages” as a
predictor) with information on the first n = 1, 2, ..., 6 months of each participant’s
activity in the OSS ESN.

A limitation in evaluating models for long time periods is that participants
who become developers in a shorter period must be discarded from the training
set, yielding a smaller dataset and consequently a less reliable model. The median
time to become a developer in our OSS projects ranges from 8 months to almost
a year (except for Log4j which is 4 months). Choosing time windows of 1 month
to 6 months for observing participants’ activity will still include more than half of
the developers in the dataset.

Table 9. Social metrics yield better performing predictive models for developer status across
most projects. Mean AUROC values over 250 runs using stratified sampling for each project.
Italicized values indicate models that include an insignificant variable in the explanatory model.
Values in bold are the highest mean AUROC value over all models that remained significant
after a post-hoc pairwise Wilcox test out of all explanatory models with significant variables.
Projects that do not have a value in bold were statistically indistinguishable.

Project Patches Patches +
Messages

Messages Messages +
Threads

Ant 0.71 0.87 0.87 0.89
Axis2 c 0.83 0.84 0.83 0.82
Log4j 0.30 0.75 0.91 0.88
Lucene 0.84 0.85 0.83 0.84
Pluto 0.79 0.77 0.76 0.74
Solr 0.76 0.90 0.91 0.96
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Table 10. Number of messages is a statistically significant predictor with as little as only one
month of data. Stability of models with log of number of messages, for 1 to 6 months. Models
using a two or three months time window are slightly more stable across all projects

Ant Axis2 c Log4j Lucene Pluto Solr
(Intercept) -3.04 -2.97 -2.94 0.55 -1.43 0.42
Messages in 1 month 1.09 0.73 1.43 0.72 0.49 0.48
Project age -0.34 -0.27 -0.45 -0.81 -0.36 -0.84
(Intercept) -3.63 -3.64 -5.8 -0.09 -1.8 -0.92
Messages in 2 months 1.2 0.83 1.63 0.87 0.46 0.83
Project age -0.32 -0.24 -0.17 -0.79 -0.31 -0.78
(Intercept) -4.15 -3.77 -6.3 -0.25 -2.24 -2.64
Messages in 3 months 1.24 0.81 1.76 1.02 0.84 1.11
Project age -0.29 -0.26 -0.17 -0.83 -0.38 -0.67
(Intercept) -4.9 -3.27 -6.75 -0.83 -3.24 -3.13
Messages in 4 months 1.4 0.68 1.77 1.13 0.91 1.31
Project age -0.24 -0.32 -0.15 -0.81 -0.27 -0.72
(Intercept) -6.05 -3.51 -7.74 -0.92 -4.15 -3.37
Messages in 5 months 1.42 0.7 1.86 1.13 0.96 1.32
Project age -0.1 -0.32 -0.1 -0.82 -0.18 -0.72
(Intercept) -6.73 -3.48 -7.78 -0.98 -4.46 -3.57
Messages in 6 months 1.4 0.69 1.8 1.1 1.07 1.41
Project age 0 -0.34 -0.08 -0.82 -0.19 -0.77

The modeling results can be seen in Table 10. For one or two months the
models are not as significant as other models. But afterwards all the models are
statistically significant, valid, and surprisingly stable.

Model stability only tells one part of the story, viz., it can explain how the
model fits the data. However, there is always risk of over-training and evaluation
of the predictive power of the models will more effectively demonstrate the value
of this model in a realistic setting. We see in Figure 6 that the predictive powers
of the models differ slightly from one time window to another. Time windows less
than 3 months slightly suffer from lower predictive power and time windows of
greater than 4 months are almost no better than 3 or 4 months. We choose 3
months as our default because of best overall stability and predictive power (4
months is almost just as good, but with our goal of prediction, the smaller the
time window, the better).

Additionally, adding the number of threads to our model improved the predic-
tion results in two projects. Figure 5 (bottom) and Figure 7 show that adding the
number of threads to the model slightly improves prediction performance.

Result 2: Developer initiation can be modeled with as little as one month’s

information about the social activity of individuals; using three months yields

stronger and more stable result.

5.3 Research Question 3

Previous studies on gamification and goal-directed approach behavior, reviewed
in Section 2.2, suggest viewing developer initiation as an incentives-based process,
in which uninitiated developers are motivated by obtaining committership. In this
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Figure 6. The predictive power of the model using “number of messages” from 1 to 6 months,
each on 250 iterations of modeling using stratified data. The AUROC for each project slightly
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Figure 7. The AUROC of two projects with two different models. Black lines represent models
using only “Number of messages” while red dashed lines represent models with “Number of
Threads” added to them. The latter performs slightly better than the former.

light, developers may exhibit distinctive dynamics of (social) activity around “re-
ward” (i.e., committership) time, e.g., similar to Stack Overflow users around the
time of obtaining a badge [46, 47], or IBM social networking site users around
the time of levelling up [45]: substantial rise in activity before achieving the goal
followed by an immediate drop.

We start by visually analysing social activity trends using a six-months window
prior to and after developer initiation. After excluding developers who became
committers in fewer than six months after their first interaction on the mailing list
(e.g., were already committers from the beginning of the project) and developers
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who became committers later than six months prior to the end data collection
date, for which not enough measurements of their social activity exist, our sample
consists of 67 developers across the six ASF projects. For each project and periods
of six months (approximated as 30 day intervals) prior to and after committership
status (centred at time 0), Figure 8 depicts boxplots of the number of messages by
developers in that project. Visual inspection of Figure 8 suggests a peak in social
activity close to committership status (either one month before—in Axis2 c—
, or one—in Ant, Lucene, or Pluto—or two—in Log4j—months after initiation),
followed by a drop in communication in the following months, in all projects except
Solr.

To statistically evaluate the presence of trends in the data, we split each devel-
oper’s communication history into two equal-sized groups, at the initiation point,
and test for the existence of increasing and decreasing trends prior to and follow-
ing developer initiation. We test for a simple monotonic trend between time t and
the values at time t, y(t), using the non-parametric Mann-Kendall test [60]. For
3 of the 6 projects we confirm a statistically significant monotonic trend for the
six months prior to developer initiation, while for one of the six we confirm only
a statistically suggestive monotonic trend (Table 11). On the other hand, for the
six months following developer initiation, we cannot confirm a monotonic trend
in any of the projects. However, for five of the six projects (all but Solr) the test
statistic (tau) is negative, indicating a downward trend.

To gain more insight into these quantitative results, we proceed to cluster
the individual patterns of communication activity for the 67 developers in our
sample. Since we are interested in trends or patterns of social interaction, using
the observed (i.e., unsmoothed) values would introduce excessive noise. Instead,
we consider LOESS [61] smoothed versions with unit span of each developer’s
time series of social interactions, to obtain the clearest trends. Then, we perform
clustering of the different communication patterns using an open card sorting
approach [62], where each card contains the communication pattern of each de-
veloper. Card sorting is a technique frequently used in qualitative research for
categorisation (assigning cards into meaningful groups). In case of open card sort-
ing, there are no predefined groups, but rather groups emerge and evolve during
the sorting process. To reduce bias, each of the first three authors independently
assigned cards to clusters, after which review and discussion took place until all
participants agreed on the final set of clusters. The results are presented in Fig-
ure 9.

We reflect on a number of observations. First of all, six out of the seven clusters
(cluster 6 contains too few developers to draw any meaningful conclusions), com-

Table 11. Mann-Kendall Trend test for 6 months prior to and after becoming committer.

6 months before 6 months after
tau p-value tau p-value

Ant 0.20 0.00 -0.05 0.27
Axis2 c 0.11 0.18 -0.09 0.17
Log4j 0.28 0.07 -0.08 0.30
Lucene 0.21 0.00 -0.01 0.83
Pluto 0.23 0.03 -0.12 0.08
Solr -0.01 0.90 0.01 0.89
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Figure 8. Boxplots of individual’s communication activity around time to become a committer.
The numbers in parentheses besides each project’s name indicate the number of individuals
in the boxplots. Developers who became committers in fewer than 6 months after their first
message on the mailing list (e.g., were already committers from the beginning of the project)
and developers who became committers later than 6 months prior to the end data collection
date, for which not enough measurements of their social activity exist, were excluded.

prising the vast majority of developers, fall into either of three groups of patterns.
The first group, comprising clusters 1, 2, 3 and, to a lesser extent 5, consists of de-
velopers that exhibit the anticipated goal-directed approach behavior: a ramp-up
of social activity in the period of time immediately before (cluster 1), right around
(cluster 2) and shortly after (cluster 3) developer initiation, followed by a cooling
off period. Developers in cluster 5 do not exhibit the drop in social activity after
becoming committers.
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Figure 9. Patterns of social activity prior to and after developer initiation, as resulting from
manual clustering based on open card sorting. Developers from the same project are assigned
the same color. The numbers in parentheses besides each cluster number indicate the number
of individuals in that cluster.

The second group, consisting of cluster 7, includes developers for which com-
mittership does not seem to impact their social behavior. Further manual inspec-
tion reveals that developers in this cluster often are well known members of the
ASF community (e.g., Apache evangelists, book authors) or committers elsewhere
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already within the ASF, suggesting that established ASF contributors might need
much less reputation-building than newcomers when trying to become committers.

Finally, the third group, consisting of cluster 4, comprises developers that con-
tinue to intensify their social activity beyond reaching committer status. Further
manual inspection of this cluster suggests other external factors at play, such as
incubator projects being “graduated” as sub-projects of Lucene (e.g., Nutch) or
Ant (e.g., Ivy), together with the merger of their respective developer mailing lists
into the mailing lists of the main projects at the time of committership.

Result 3: Typically, a ramp-up of social activity occurs in the period of time

close to developer initiation. Following a short cooling off period right after initi-

ation, more individualized socialization patterns emerge.

5.4 Research Question 4

We are also interested in understanding how trust evolves over the life of each
project. Looking back at previous models, we see that in all cases, the coefficient
for “Project Age” is negative, implying it becomes increasingly difficult to become
a developer over time. To verify this hypothesis, we replaced “Project Age” with
a dummy binary variable called “IsSecond” which is true for the second half of
population (sorted in ascending order by their “Project Age”) and is false for the
first half. If the coefficient of this variable is still negative across projects it will
confirm our hypothesis that being initiated a developer becomes increasingly more
difficult over time. Ideally “Project Age” should be broken to smaller partitions (4
or more) to give us a higher resolution view, but increasing the resolution would
result in even less sample points in each partition, making the results less reliable.

Two different logistic regression models were fit to the data, and the models
are given in Table 12. We see that for all projects, the coefficient of “IsSecond” is
negative and statistically significant across three of the six projects. In a fourth
project, solr, the coefficient is statistically suggestive at the 10% level in both
models (p = 0.103, 0.108, respectively). Statistically insignificance, does not imply
the converse, we can only state that the result is “inconclusive”. The negative sign
of the coefficient, however, indicates a negative skew in the confidence intervals

Table 12. It becomes increasingly more difficult to earn trust in an OSS. Models show a dummy
variable “IsSecond” which is true for individuals that Project Age > median(Project Age).
It is seen that joining the project later has a negative effect on one’s chance of becoming a
developer.

Ant Axis2 c Log4j Lucene Pluto Solr
(Intercept) -5.5 -4.21 -7.69 -4.74 -2.99 -6.59
Number of patches 0.62 0.59 -0.76 0.62 0.85 -0.2
Number of messages 1.08 0.56 1.89 0.72 0.49 1.17
IsSecond -0.36 -2.08 -0.9 -2.46 -2.1 -1.34
(Intercept) -5.76 -4.93 -7.04 -5.42 -3.8 -6.33
Number of messages 1.24 0.82 1.78 0.99 0.88 1.07
IsSecond -0.57 -1.84 -0.99 -2.67 -2.01 -1.29
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about the predictor. In most projects “age” has a negative effect on chances of
becoming a developer. Based on these observations, we conclude:

Result 4: It becomes more difficult for individuals to become committers as

the project matures; late stage developers may have to put more effort to gain the

same level of trust.

6 Conclusion and Threats to Validity

We presented strong evidence for the determining role that social networking ac-
tivities play in becoming a developer in the studied ASF project. Surprisingly, to
this end, social communications are a better predictor than patching activity. We
also present evidence that developers’ early social activities in the project iden-
tify them as such. Moreover, prior to becoming developers, participants typically
ramp-up their socialization activities, in anticipation of their upgraded status. Ex-
pectedly, we also find that community trust is more difficult to attain with time
as the community likely takes longer to identify trustworthy contributors.

Our methods are based solely on two-way social links representing messages
sent between project participants, but is oblivious to the content of those messages.
Clearly, knowing the content of the emails would add another layer of information
that can be mined. However, the quality of our predictions while disregarding
content is an indication of the strong influence of the social link structure. This
may be of independent interest to the management and security communities.

Our results in no way imply causality, rather a strong statistical correlation
between the measured attributes that can be used for prediction and further re-
search.

We recognize several threats to the validity of our approach and conclusions.
The dataset gathered here was from 6 projects, all from the Apache Software
Foundation. This might impose a limitation on the pattern of communication and
contribution in these projects that will limit the applicability of our results to
other OSS projects. It also may be that there is a systematic bias in our data,
meaning what we measure is not the likelihood of obtaining developer status, e.g.,

people may be assigned to be developers (rather than being chosen) and are using
ESNs to familiarize themselves with the community. Although this assumption
is quite contrary to ASF’s guidelines7, it is not hard to imagine other scenarios
where developers are not chosen as we think they are.

When looking for trends in the socialization data before and after one becomes
a developer, we are obviously limited by the number of committers with 12 month
email history that is available in our dataset, which is 67 committers after elimi-
nating insufficient data entries. In addition, the analysis of short time-series data
is in general susceptible to noise arising from the multiple assumptions used, which
in our case is mitigated to an extent by our relatively straight forward analysis.

Having more projects is desirable, but practically, we had to select projects
with a large number of developers for the predictive models to have reasonable
statistical power. We cannot address private communication between developers

7 http://www.apache.org/foundation/faq.html
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which may impact the structure of the social network. This limitation, however,
affects all such work of this nature and we do not believe that it severely limits
the usefulness of our results.

Acknowledgements All authors gratefully acknowledge support from the Air Force Office
of Scientific Research, award FA955-11-1-0246. Vasilescu gratefully acknowledges support from
the Dutch Science Foundation (NWO), grant NWO 600.065.120.10N235. Part of this research
was carried out during Vasilescu’s visits at UC Davis.

References

1. D. M. German, “The GNOME project: a case study of open source, global software devel-
opment,” Software Process: Improvement and Practice, vol. 8, no. 4, pp. 201–215, 2003.

2. K. Crowston, K. Wei, J. Howison, and A. Wiggins, “Free/libre open-source software devel-
opment: What we know and what we do not know,” ACM Computing Surveys (CSUR),
vol. 44, no. 2, p. 7, 2012.

3. A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of open source soft-
ware development: Apache and Mozilla,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 11, no. 3, pp. 309–346, 2002.

4. K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, and Y. Ye, “Evolution patterns of
open-source software systems and communities,” in IWPSE. ACM, 2002, pp. 76–85.

5. Y. Ye and K. Kishida, “Toward an understanding of the motivation of open source software
developers,” in ICSE. IEEE, 2003, pp. 419–429.

6. G. Hertel, S. Niedner, and S. Herrmann, “Motivation of software developers in Open
Source projects: an internet-based survey of contributors to the Linux kernel,” Research
Policy, vol. 32, no. 7, pp. 1159–1177, 2003.

7. G. Robles and J. M. Gonzalez-Barahona, “Contributor turnover in libre software projects,”
in Open Source Systems. Springer, 2006, pp. 273–286.

8. N. Ducheneaut, “Socialization in an open source software community: A socio-technical
analysis,” CSCW, vol. 14, no. 4, pp. 323–368, 2005.

9. B. S. Butler, “Membership size, communication activity, and sustainability: A resource-
based model of online social structures,” Information systems research, vol. 12, no. 4, pp.
346–362, 2001.

10. B. Kogut and A. Metiu, “Open-source software development and distributed innovation,”
Oxford Review of Economic Policy, vol. 17, no. 2, pp. 248–264, 2001.

11. J. Roberts, I. Hann, and S. Slaughter, “Understanding the motivations, participation,
and performance of open source software developers: A longitudinal study of the Apache
projects,” Management science, vol. 52, no. 7, pp. 984–999, 2006.

12. R. Fielding, “Shared leadership in the Apache project,” Communications of the ACM,
vol. 42, no. 4, pp. 42–43, 1999.

13. V. Sinha, S. Mani, and S. Sinha, “Entering the circle of trust: developer initiation as
committers in open-source projects,” in MSR. ACM, 2011, pp. 133–142.

14. C. Jensen and W. Scacchi, “Role migration and advancement processes in OSSD projects:
A comparative case study,” in ICSE. IEEE, 2007, pp. 364–374.

15. C. Bird, A. Gourley, P. Devanbu, A. Swaminathan, and G. Hsu, “Open borders? pImmi-
gration in open source projects,” in MSR. IEEE, 2007, pp. 6–6.

16. M. Cataldo, J. D. Herbsleb, and K. M. Carley, “Socio-technical congruence: a framework
for assessing the impact of technical and work dependencies on software development
productivity,” in ESEM. ACM, 2008, pp. 2–11.

17. N. Bettenburg and A. E. Hassan, “Studying the impact of social structures on software
quality,” in ICPC. IEEE, 2010, pp. 124–133.

18. C. Bird, N. Nagappan, P. Devanbu, H. Gall, and B. Murphy, “Does distributed develop-
ment affect software quality?an empirical case study of Windows Vista,” Communications
of the ACM, vol. 52, no. 8, pp. 85–93, 2009.

19. Y. Long and K. Siau, “Social network structures in open source software development
teams,” Journal of Database Management (JDM), vol. 18, no. 2, pp. 25–40, 2007.

20. K. Crowston and J. Howison, “The social structure of free and open source software
development,” First Monday, vol. 10, no. 2, 2005.



Developer Initiation and Social Interactions in OSS 33

21. C. De Souza, J. Froehlich, and P. Dourish, “Seeking the source: software source code as a
social and technical artifact,” in SIGGROUP. ACM, 2005, pp. 197–206.

22. E. Raymond, “The cathedral and the bazaar,” Knowledge, Technology & Policy, vol. 12,
no. 3, pp. 23–49, 1999.

23. K. Stewart and S. Gosain, “An exploratory study of ideology and trust in open source
development groups,” in ICIS. ACM, 2001, pp. 1–6.

24. M. Newman, S. Forrest, and J. Balthrop, “Email networks and the spread of computer
viruses,” Physical Review E, vol. 66, no. 3, pp. 035 101(R):1–4, 2002.

25. C. Fershtman and N. Gandal, “Direct and indirect knowledge spillovers: the “social net-
work” of open-source projects,” The RAND Journal of Economics, vol. 42, no. 1, pp.
70–91, 2011.

26. G. Krogh and E. Hippel, “The promise of research on open source software,” Management
Science, vol. 52, no. 7, pp. 975–983, 2006.

27. W. Scacchi, “Free/Open source software development: Recent research results and meth-
ods,” Advances in Computers, vol. 69, pp. 243–295, 2007.

28. C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan, “Mining email social
networks,” in MSR. ACM, 2006, pp. 137–143.

29. F. Rahman, D. Posnett, and P. Devanbu, “Recalling the imprecision of cross-project defect
prediction,” in Proceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering. ACM, 2012, p. 61.

30. F. Rahman, D. Posnett, I. Herraiz, and P. Devanbu, “Sample size vs. bias in defect pre-
diction,” in Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engi-
neering. ACM, 2013, pp. 147–157.

31. M. Jureczko and L. Madeyski, “Towards identifying software project clusters with regard
to defect prediction,” in Proceedings of the 6th International Conference on Predictive
Models in Software Engineering. ACM, 2010, p. 9.

32. M. Jureczko and D. Spinellis, “Using object-oriented design metrics to predict software
defects,” Models and Methods of System Dependability. Oficyna Wydawnicza Politechniki
Wroc lawskiej, pp. 69–81, 2010.

33. D. Posnett, V. Filkov, and P. Devanbu, “Ecological inference in empirical software engi-
neering,” in Proceedings of the 2011 26th IEEE/ACM International Conference on Au-
tomated Software Engineering. IEEE Computer Society, 2011, pp. 362–371.

34. G. Von Krogh, S. Spaeth, and K. Lakhani, “Community, joining, and specialization in open
source software innovation: a case study,” Research Policy, vol. 32, no. 7, pp. 1217–1241,
2003.

35. I. Herraiz, G. Robles, J. Amor, T. Romera, and J. González Barahona, “The processes
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